A note on the Cramer-Rao bound for 2-D direction finding based on 2-D array

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on the Intrinsic Cramer-Rao Bound

We consider the intrinsic version of the Cramer-Rao lower bound (CRLB) as introduced by S.T. Smith in 2005. In the concerned paper, the derived lower bound on the intrinsic root-mean-square error (RMSE) of any sample covariance matrix (SCM) estimator is shown not to depend on the underlying parameter, and the author claims the result stems from the invariances of the Fisher Information Metric (...

متن کامل

ESPRIT-based 2-D direction finding with a sparse uniform array of electromagnetic vector sensors

Aperture extension (interferometry baseline extension) is achieved in this novel ESPRIT-based two-dimensional (2-D) arrival angle estimation scheme using a sparse (a.k.a., thin or thinned) uniform rectangular array of electromagnetic vector sensors spaced much farther apart than a half-wavelength. An electromagnetic vector sensor is composed of six spatially co-located, orthogonally oriented, d...

متن کامل

Note for Cramer-Rao Bounds

• (z)r and (z)i denote the real and imaginary part of z. II. CONSTRAINED CRAMER-RAO BOUND A. Problem Statement Problem statement and notation are based on [1]. • a: a K × 1 non-random vector which are to be estimated. • r: an observation of a random vector . • â (R): an estimate of a basing on the observed vector r . It is required that â (R) satisfies M nonlinear equality constraints (M < K), ...

متن کامل

On the Cramer Rao bound for Terrain Aided Navigation

LINKÖPING Technical reports from the Automatic Control group in Linkk oping are available as UNIX-compressed Postscript les by anonymous ftp at the address 130.236.20.24

متن کامل

The Cramer-Rao Bound for Sparse Estimation

The goal of this paper is to characterize the best achievable performance for the problem of estimating an unknown parameter having a sparse representation. Specifically, we consider the setting in which a sparsely representable deterministic parameter vector is to be estimated from measurements corrupted by Gaussian noise, and derive a lower bound on the mean-squared error (MSE) achievable in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Signal Processing

سال: 1991

ISSN: 1053-587X,1941-0476

DOI: 10.1109/78.80958